# lazymix+ v4 inpaint > AI model for generating stable diffusion content ## Overview - **Model ID**: `lazymixv4-inpaint` - **Category**: stable diffusion - **Provider**: modelslab - **Status**: model_ready - **Screenshot**: `https://assets.modelslab.com/generations/11e54402-481a-460b-928b-05c6c72a1e59-0.png` ## API Information This model can be used via our HTTP API. See the API documentation and usage examples below. ### Endpoint - **URL**: `https://modelslab.com/api/v6/images/inpaint` - **Method**: POST ### Parameters - **`prompt`** (required): - Type: textarea - Example: Please enter a prompt here - **`init_image`** (required): Upload the image you want a part to be replaced - Type: file (image/jpeg,image/png,image/webp) - Example: Please upload image - **`mask_image`** (required): upload mask image for the part of the image you want to replace a part - Type: file (image/jpeg,image/png,image/webp) - Example: Upload mask image - **`strength`** (required): Strength controls how much the output follows the prompt vs. the original image. 1 = more prompt-driven, 0.1 = minimal change, more like the original - Type: number (range: 0.1-1) - **`samples`** (optional): - Type: number (range: 1-4) - **`model_id`** (optional): - Type: select (options: lazymixv4-inpaint, v51_inpainting, realistic-vision-v6.0-b1-inpaint-n) - **`steps`** (optional): - Type: number (range: 21-31) - **`scheduler`** (optional): - Type: select (options: DPM++ 2M, Euler, Euler a) - **`track_id`** (optional): ID for webhook identification - Type: number ## Usage Examples ### cURL ```bash curl --request POST \ --url https://modelslab.com/api/v6/images/inpaint \ --header "Content-Type: application/json" \ --data '{ "key": "YOUR_API_KEY", "model_id": "lazymixv4-inpaint", "prompt": "wearing black bodycon dress", "init_image": "https://assets.modelslab.com/generations/ae796f25-7c05-4415-8fc5-8bc1f7c06e12", "mask_image": "https://assets.modelslab.com/generations/71177163-a6f0-4cec-a048-1644eb47a5c2", "strength": "1.0", "samples": "1", "steps": "31", "scheduler": "DPMSolverMultistepScheduler", "track_id": "0" }' ``` ### Python ```python import requests response = requests.post( "https://modelslab.com/api/v6/images/inpaint", headers={ "Content-Type": "application/json" }, json={ "key": "YOUR_API_KEY", "model_id": "lazymixv4-inpaint", "prompt": "wearing black bodycon dress", "init_image": "https://assets.modelslab.com/generations/ae796f25-7c05-4415-8fc5-8bc1f7c06e12", "mask_image": "https://assets.modelslab.com/generations/71177163-a6f0-4cec-a048-1644eb47a5c2", "strength": "1.0", "samples": "1", "steps": "31", "scheduler": "DPMSolverMultistepScheduler", "track_id": "0" } ) print(response.json()) ``` ### JavaScript ```javascript fetch("https://modelslab.com/api/v6/images/inpaint", { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify({ "key": "YOUR_API_KEY", "model_id": "lazymixv4-inpaint", "prompt": "wearing black bodycon dress", "init_image": "https://assets.modelslab.com/generations/ae796f25-7c05-4415-8fc5-8bc1f7c06e12", "mask_image": "https://assets.modelslab.com/generations/71177163-a6f0-4cec-a048-1644eb47a5c2", "strength": "1.0", "samples": "1", "steps": "31", "scheduler": "DPMSolverMultistepScheduler", "track_id": "0" }) }) .then(response => response.json()) .then(data => console.log(data)); ``` ## Links - [Model Playground](https://modelslab.com/models/replace-object-inpaint/lazymixv4-inpaint) - [API Documentation](https://docs.modelslab.com) - [ModelsLab Platform](https://modelslab.com)