# Flux Lora Trainer > Fast-train your custom models with optimized pipelines, supporting various image formats, and requiring minimal 16GB VRAM for efficient fine-tuning. ## Overview - **Model ID**: `flux_lora_trainer` - **Category**: training - **Provider**: modelslab - **Status**: active - **Screenshot**: `https://assets.modelslab.com/generations/7652d0aa-4790-481a-89af-febe06c86a83.webp` ## API Information This model can be used via our HTTP API. See the API documentation and usage examples below. ### Endpoint - **URL**: `https://modelslab.com/api/v6/trainer/train` - **Method**: POST ### Parameters - **`images`** (required): Upload or paste the URL to training images - Type: array - **`trigger_word`** (required): Trigger word for the LoRA model - Type: text - **`hf_username`** (optional): username for huggingface (Required) - Type: text - **`hf_token`** (optional): hf token for the user (Required) - Type: text - **`training_steps`** (optional): Recommended training steps are based on your dataset size. Training Steps = 100 to 150 × number of images. Example 10 images × 150 = 1500 steps. General Rule of Thumb: Fewer images = more steps per image. More images = fewer steps per image - Type: number (range: 1-10000) - **`server_name`** (required): Select server to train your lora model - Type: select (options: NVIDIA H100 SXM ($3.00/hr)) ## Usage Examples ### cURL ```bash curl --request POST \ --url https://modelslab.com/api/v6/trainer/train \ --header "Content-Type: application/json" \ --data '{ "key": "YOUR_API_KEY", "model_id": "flux_lora_trainer", "trigger_word": "Pink", "training_steps": "1000", "server_name": "NVIDIA H100 80GB HBM3" }' ``` ### Python ```python import requests response = requests.post( "https://modelslab.com/api/v6/trainer/train", headers={ "Content-Type": "application/json" }, json={ "key": "YOUR_API_KEY", "model_id": "flux_lora_trainer", "trigger_word": "Pink", "training_steps": "1000", "server_name": "NVIDIA H100 80GB HBM3" } ) print(response.json()) ``` ### JavaScript ```javascript fetch("https://modelslab.com/api/v6/trainer/train", { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify({ "key": "YOUR_API_KEY", "model_id": "flux_lora_trainer", "trigger_word": "Pink", "training_steps": "1000", "server_name": "NVIDIA H100 80GB HBM3" }) }) .then(response => response.json()) .then(data => console.log(data)); ``` ## Links - [Model Playground](https://modelslab.com/models/flux_lora_trainer/flux_lora_trainer) - [API Documentation](https://docs.modelslab.com) - [ModelsLab Platform](https://modelslab.com)